

Linux 5.10 Yocto SDK

User Manual

V 2.2

1 Introduction
Thank you for choosing a miriac Single Board Computer from MicroSys. This User

Manual shows the steps needed to boot Linux, to run programs on the SBC,

including your own benchmarks, and also details how to make modifications and

updates to the U-Boot bootloader and/or the Linux kernel to meet your own

requirements.

The Linux 5.10.35 Yocto Software Development Kit is valid for the following miriac

Single Board Computers from MicroSys:

SBC-LS1043A
SBC-LS1046A
SBC-LS1088A
SBC-LS1046A-TSN
SBC-LX2160A
AIP-LX2160A

2 Prerequisites

2.1.1 Host Machine Requirements

To operate the board, you will need a host machine with the following capabilities:

■ an Ethernet interface to connect to the SBC either directly or via your local

network. In addition, to be able to build a Linux kernel you’ll need an internet

connection.

■ a USB port running a terminal software program (e.g. TeraTerm,

HyperTerminal, putty, ckermit...), or else a hardware serial console.

Choose the following parameters:

(a) 115200 Bd

(b) 8 Data bits

(c) No parity

(d) 1 Stop Bit

If you want to build the Linux kernel, you’ll need to have Linux running on your

host. If the host is a Windows machine, then you’ll need to run Linux in

VirtualBox, VMware or a similar virtual machine.

Linux 5.10 Yocto SDK V2.1 3/25
 © MicroSys Electronics GmbH 2022

3 Board Preparation and Power-Up

3.1 CRX05
Make sure that switch SW1-1 is ON and SW1-2 is ON. This is the factory default
and selects the SD card as the boot media.

■ Insert the SD card provided into ST1

■ The board comes pre-configured to boot correctly on arrival (by default from

SD card)

■ Connect the mini USB cable to ST5.

■ Connect an Ethernet cable to an RJ45 connector (see table 3-1)

■ Connect the power cable to the ST3 connector, while the power supply is still

switched off.

■ Open a terminal console on the host PC (set to 115200, 8, N, 1)

■ Switch on the power.

Linux 5.10 Yocto SDK V2.1 4/25
 © MicroSys Electronics GmbH 2022

The following picture shows the front view of the two dual RJ-45 connectors as
placed on the CRX05 carrier.

LAN
port

LS1043A

interface

LS1046A

interface

LS1088A

interface

PHY address

1 fm1-mac9 fm1-mac9 dpmac2 0000

2 n/c fm1-mac6 dpmac3 0001

3 fm1-mac2 fm1-mac5 dpmac7 0010

4 fm1-mac3 fm1-mac3 dpmac4 0011

Table 3-1 Ethernet port to Linux interface assignment

3.2 CRX08

Make sure that switch SW5-1 is ON and SW5-2 is ON. This is the factory default
and selects the SD card as the boot media.

■ Insert the SD card provided into ST31

■ The board comes pre-configured to boot correctly on arrival (by default from

SD card)

■ Connect the mini USB cable to ST29.

■ Connect an Ethernet cable to an RJ45 connector (see table 3-1)

■ Connect the ATX power cable (24 Pin Molex Mini-Fit) to the ST3 connector

and 8 Pin Molex Mini-Fit to ST5, while the power supply is still switched off.

■ Open a terminal console on the host PC (set to 115200, 8, N, 1)

■ Switch on the ATX power supply and press the power up button.

Linux 5.10 Yocto SDK V2.1 5/25
 © MicroSys Electronics GmbH 2022

LAN
port

LX2160A

interface

PHY address

1 dpmac17 0x0

2 dpmac18 0x1

3 dpmac3 0x10

4 dpmac4 0x11

5 dpmac5 SFP-25G

6 dpmac6 SFP-25G

4 Operation

After Power-up, the green LED on the module should light up
and any red LED should be off.

IF NOT, DISCONNECT THE UNIT FROM POWER AND CHECK
FOR FAULTS!

4.1 Boot Procedure
When power is supplied the system will boot into U-Boot.
The factory default settings configure U-Boot to boot straight into Linux. So if you
do not intervene, after a few seconds, you will see the Linux prompt:

MicroSys 3.3 mpxls10nn ttyS0

mpxls10xx login:

Enter ‘root’ and hit return. By default, no password is set for root.

mpxls10xx login: root

root@mpxls10xx:~#

You can now enter Linux commands and run programs. Continue in section 2.2

Linux 5.10 Yocto SDK V2.1 6/25
 © MicroSys Electronics GmbH 2022

4.1.1 Only boot into U-Boot

If you want to view the U-Boot parameters, then you will need to prevent U-Boot
from automatically booting into Linux by hitting any key during the autoboot timeout
phase:

.

PCIe0: pcie@3400000 disabled

PCIe1: pcie@3500000 Root Complex: no link

PCIe2: pcie@3600000 disabled

FM1@DTSEC3 [PRIME], FM1@DTSEC5, FM1@DTSEC6, FM1@DTSEC9

Hit any key to stop autoboot: 0

=>

When you see the U-Boot prompt, =>, you can enter U-Boot commands to change
some parameters, for example your IP address, and view various settings.

=> version // show U-Boot version

=> help // show available commands

=> bdinfo // show board info

=> printenv // show environment variables

=> setenv ipaddr 192.168.1.22 // set environment variable

=> imi // print header information for

application image
=> reset // reboot the board
=> boot // boot OS (in our case: Linux)

Note that the U-Boot environment variables are stored in an I2C EEPROM on the

SoM. This means that if you have updated your boot medium there might be a mis-

match in the envvars which prevents Linux from booting. To update the envvars in

EEPROM enter the following:

=> env default -f -a // fetch defaults from boot medium

=> saveenv // save to EEPROM

If you want to return to U-Boot from Linux, then you need to reboot the board. This

can be done either by power-cycling the board; or pressing the reset button; or, the

most elegant and preferred method, by shutting down and rebooting Linux:

root@mpxls10xx:~# reboot

The system is going down for reboot NOW! (ttyS0) (Fri Aug 20

11:17:00 2021):

INIT: Sending processes the TERM signal

Linux 5.10 Yocto SDK V2.1 7/25
 © MicroSys Electronics GmbH 2022

4.2 Running Linux Programs

Once you see the Linux prompt and have logged on, you can enter Linux com-
mands. Here are some useful commands:

uname -a // shows Linux kernel version and other info

ifconfig -a // shows the Ethernet interfaces, including IP addresses

df // display filesystems

cat /proc/mtd // shows the partitions in NAND Flash

reboot // gracefully shutdown Linux and reboot

shutdown now // shutdown Linux immediately (no reboot)

restool dpmac info dpmac.17 // show status of the Ethernet port in MC domain

4.2.1 Ethernet Connectivity

One of the first things you are likely to want to do is transfer programs from your
host machine to the SBC target.

By default, the Linux is not configured to use DHCP, therefore no IP address will
have been assigned.
To see the Ethernet interfaces, enter:

root@mpxls10xx:~# ifconfig -a

The SBC-LS1046A and SBC-LS1088A will show 4 Ethernet interfaces and the
SBC-LS1043A will show 3 interfaces.

To assign an IP address to an Ethernet interface, you can either configure the in-
terface manually:

CRX05:

root@mpxls10xx:~# ifconfig fm1-mac3 192.168.0.111 up

CRX08:

root@mpxls10xx:~# ifconfig dpmac17 192.168.0.111 up

Or, to avoid having to enter this every time you boot Linux, you can edit the
/etc/network/interfaces file and add configurations for all the interfaces you

intend to use. For example, here fm1-mac3 is configured to use dhcp:

root@mpxls10xx:~# cat /etc/network/interfaces

/etc/network/interfaces -- configuration file for ifup(8), if-

down(8)

The loopback interface

auto lo

iface lo inet loopback

The fm1-mac3 interface

auto fm1-mac3

iface fm1-mac3 inet dhcp

Linux 5.10 Yocto SDK V2.1 8/25
 © MicroSys Electronics GmbH 2022

Once you can ping the SBC from your host, you can transfer a file to the SBC, for
example a benchmark program. If your host machine is running Windows, we rec-
ommend using WinSCP to transfer files between host and target.

4.2.2 Ethernet Performance
The NXP Layerscape processors contain an Ethernet controller known as DPAA

(Datapath Acceleration Architecture). The LS1043A and LS1046A contain a DPAA

and the LS1088A and LX2160A contain the second generation DPAA2. Further

documentation on the DPAA and DPAA2 can be found in NXP's Reference

Manuals for the corresponding processor and the separate DPAA Reference

Manual.

One of the hardware blocks within the DPAA is the Frame Manager (FMan) – a

functional unit that combines the Ethernet network interfaces with packet

distribution logic to provide intelligent distribution and queuing decisions for

incoming traffic at line rate.

The Frame Manager Configuration Tool (FMC) is a command line tool used to

configure the FMan to perform the desired parse-classify-distribute function for a

given application. The FMC needs to be invoked to improve receive performance

on the Ethernet interfaces.

root@mpxls10xx:~# cd /etc/fmc/config/private/mpxls1046
root@mpxls10xx:~# fmc -c mpxls1046_config.xml -p policy_ipv4.xml -a

4.2.3 Compiling Programs On The Target
If you booted from the SD card, then the default root filesystem already contains a

gcc toolchain (GCC 10.2.0) allowing you to compile natively on the target.

root@mpxls10xx:~# cc helloWorld.c -o hello

This creates an executable with the name hello. To run it:

root@mpxls10xx:~# ./hello

4.2.4 Cross-compilation On The Linux Host
To cross-compile for an ARMv8 target you first need to build the cross-toolchain on

your Linux host. Please refer to section 6.4 Build Toolchain for Cross-compilation.

After you have soured the environment file you can verify the setup and build your

application

$ echo $CC

aarch64-fsl-linux-gcc --sysroot=/home/user/yocto-

sdk/build_mpxls1046/tmp/work/aarch64-fsl-linux/meta-ide-sup-

port/1.0-r3/recipe-sysroot

$ $CC helloWorld.c -o hello

Now you can transfer the executable file hello over to your target and run it there.

Linux 5.10 Yocto SDK V2.1 9/25
 © MicroSys Electronics GmbH 2022

5 Restoring The Default Images

5.1 Boot Media

5.1.1.1.1 CRX05

Per default the board will boot into Linux from the SD card (assuming you have

inserted it correctly). The alternative boot media are provided so that you can

experiment. In addition, they serve as a means of recovery should you accidentally

corrupt or delete any of the boot images. The following table shows how to select

between the three boot media. Note that booting from NAND Flash is only

supported on the MPX-LS1043A.

The accompanying SD card contains a complete U-Boot, Linux kernel and root

filesystem whereas only U-Boot is programmed in the SPI Flash (and also in NAND

on the MPX-LS1043A).

The default images for each boot media are provided on the USB stick delivered

with the Evaluation Kit. The following sections describe how to deploy these

images to the respective boot media.

Copy the build images to your nfsserver directory on a Linux host. If you are

running on a Windows host, then use the directory shared between Windows and

your Linux VM (VirtualBox or VMware). Also for Windows hosts you will need to

have a TFTP server running.

Setting SW 1-1 SW 1-2
Boot

device
Features

Boot
location

OFF OFF QSPI Flash module

OFF ON NAND Flash module

ON OFF SD/MMC - carrier board

ON ON SD/MMC - - carrier board

Linux 5.10 Yocto SDK V2.1 10/25
 © MicroSys Electronics GmbH 2022

5.1.2 CRX08

Per default the board will boot into Linux from the SD card (assuming you have

inserted it correctly). The alternative boot media are provided so that you can

experiment. In addition, they serve as a means of recovery should you accidentally

corrupt or delete any of the boot images. The following table shows how to select

between the boot media.

 SEL3 SEL2 SEL1 SEL0 Boot Source Description

0xF 1 1 1 1 Flex-SPI Serial-NOR A default

0xD
0x9
0x5
0x1

X X 0 1 SD Card

0x7 0 1 1 1 Flex-SPI Serial-NOR B

Second NOR Flash
(Available only when the
PLL is configured
accordingly)

5.2 Memory Map

This version of the MicroSys Yocto SDK contains major changes to the boot flow
compared to the previous release for the 5.10.35 kernel. This version uses TF-A in-
stead of PPA as used in the previous release.
For a detailed explanation of the changes, it is recommended to read NXP's LSDK
21.08 documentation:

https://www.nxp.com/docs/en/user-guide/LSDKUG_Rev21.08.pdf

The various hardware accelerator blocks in the QorIQ processors, for example
DPAA in the LS1043A and LS1046A or DPAA2 in the LS1088A and LX2160A, re-
quire microcode to be loaded. The memory map is uniform across all the modules
supported by this SDK, but not all the firmware needs to be loaded for a given
module.

Definition
Max
Size

QSPI/NAND
Flash Offset

SD Card
Start Block (hex)

SD Card
Start Block (dec)

bl2.pbl 1MB 0x0000.0000 0x00008 8

fip_uboot.bin 2MB 0x0010.0000 0x00800 2048

DPAA FMan ucode 256KB 0x0001.0000 0x04800 18432

QE Firmware 256KB 0x0094.0000 0x04A00 18944

DPAA2 MC Firmware 3MB 0x00A0.0000 0x05000 20480

DPAA2 DPL 1MB 0x00D0.0000 0x06800 26624

DPAA2 DPC 1MB 0x00E0.0000 0x07000 28672

Table 5-2 Memory Map for Flash and SD Card

https://www.nxp.com/docs/en/user-guide/LSDKUG_Rev21.08.pdf

Linux 5.10 Yocto SDK V2.1 11/25
 © MicroSys Electronics GmbH 2022

5.3 SD Card

It is advisable to deploy the default images to a second, new microSD card so that

you have a back-up. MicroSys recommends using a microSD card with a capacity

of at least 4GB. The SBC will accept SDHC cards up to 32GB and an SDXC card

of 64GB has also been successfully tested.

The first step involves partitioning your virgin SD card. The second step involves

copying the root filesystem and Image Tree Binary over and the third step is to

copy U-Boot and the various firmware to the SD card.

Step 1) Create a new partition on the SD card.

Insert an SD card in your Linux host and use the dmesg command to determine the

name it has been assigned.

$ dmesg | tail

[118013.491177] sd 4:0:0:2: [sdd] 3921920 512-byte logical blocks:

(2.00 GB/1.87 GiB)

[118013.495020] sd 4:0:0:2: [sdd] Write Protect is off

[118013.495023] sd 4:0:0:2: [sdd] Mode Sense: 43 00 00 08

[118013.499008] sd 4:0:0:2: [sdd] No Caching mode page found

[118013.499011] sd 4:0:0:2: [sdd] Assuming drive cache: write

through

From the above log, we can see that the SD card is /dev/sdd.

Use the df command to see if it has been mounted and, if yes, please unmount it

using the umount command.

Use the fdisk command to create a new partition. (In most cases you can use the

default value with the exception of the first sector which should be at least 131072

blocks since you need to leave space for all the firmware).

fdisk /dev/sdd

Command (m for help): p

Disk /dev/sdd: 2008 MB, 2008023040 bytes, 3921920 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk label type: dos

Disk identifier: 0x00000000

 Device Boot Start End Blocks Id System

/dev/sdd1 4096 3921919 1958912 83 Linux

Command (m for help): d

Selected partition 1

Partition 1 is deleted

Linux 5.10 Yocto SDK V2.1 12/25
 © MicroSys Electronics GmbH 2022

Command (m for help): n

Partition type:

 p primary (0 primary, 0 extended, 4 free)

 e extended

Select (default p): p

Partition number (1-4, default 1):

First sector (2048-3921919, default 2048): 131072

Last sector, +sectors or +size{K,M,G} (131072-3921919, default

3921919):

Using default value 3921919

Partition 1 of type Linux and of size 1.9 GiB is set

Command (m for help): w

The partition table has been altered!

Calling ioctl() to re-read partition table.

Syncing disks.

Use the mkfs.ext2 command to format the filesystem (this command will take 4 or 5

secs to complete; user input is not required).

mkfs.ext2 /dev/sdd1

mke2fs 1.42.9 (28-Dec-2013)

Filesystem label=

OS type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

Stride=0 blocks, Stripe width=0 blocks

122640 inodes, 489728 blocks

24486 blocks (5.00%) reserved for the super user

First data block=0

Maximum filesystem blocks=503316480

15 block groups

32768 blocks per group, 32768 fragments per group

8176 inodes per group

Superblock backups stored on blocks:

 32768, 98304, 163840, 229376, 294912

Allocating group tables: done

Writing inode tables: done

Writing superblocks and filesystem accounting information: done

Step 2) Now mount this partition and copy the rootfs and Image Tree Binary over.

Linux 5.10 Yocto SDK V2.1 13/25
 © MicroSys Electronics GmbH 2022

mkdir /media/SD

mount /dev/sdd1 /media/SD

sudo tar xf microsys-image-networking-mpxls10xx-date.rootfs.tar.gz

-C /media/SD

cp fitImage.itb /media/SD/boot

Step 3) You still need to copy U-Boot and various microcodes to the SD card.

There are 2 methods to do this. The easiest is to use Linux while you still have your

SD card mounted on your Linux host.

For the LS1043A and LS1046A processors, the procedure is as follows:

dd if=bl2_sd.pbl of=/dev/sdd bs=512 seek=8

dd if=fip_uboot.bin of=/dev/sdd bs=512 seek=2048

dd if=fsl_fman_ucode_ls1043_r1.1_106_4_18.bin of=/dev/sdd bs=512

seek=18432

dd if=iram_Type_A_LS1021a_r1.0.bin of=/dev/sdd bs=512 seek=18944

For the LS1088A processor, use:

dd if=bl2_sd.pbl of=/dev/sdd bs=512 seek=8

dd if=fip_uboot.bin of=/dev/sdd bs=512 seek=2048

dd if=ddr-phy/fip_ddr_all.bin of=/dev/sdd bs=512 seek=16384

dd if=mc_app/mc.itb of=/dev/sdd bs=512 seek=20480

dd if=dpl-eth.19.dtb of=/dev/sdd bs=512 seek=26624

dd if=dpc-usxgmii.crx08.dtb of=/dev/sdd bs=512 seek=28672

Alternatively, you can insert the SD card into the SBC-LS10xxA and having booted

into U-Boot from QSPI, enter the following commands:

=> setenv loadaddr a0000000

=> tftp bl2.pbl

=> mmc write $loadaddr 8 $filesize

=> tftp fip_uboot.bin

=> mmc write $loadaddr 800 $filesize

=> tftp fman_ucode_ls1046_r1.0_108_4_9.bin

=> mmc write $loadaddr 4800 $filesize

Note that the U-Boot mmc command requires the block number as a hexadecimal

(0x4800 = 18432)

Linux 5.10 Yocto SDK V2.1 14/25
 © MicroSys Electronics GmbH 2022

5.4 QSPI Flash

When programming the QSPI Flash, the RCW needs to be programmed separately

and, for the MPXLS1043A and MPXLS1046A, you must use the swapped version.

The RCW file is to be found in a sub-directory from where the other images are.

For example:

$ cd

$BLD/tmp/deploy/images/mpxls10xxcrxxx/qspi_firmware_mpxls1043.img/

At the U-Boot prompt, edit the serverip address to suit your network and make sure
you are able to ping the server:

=> ping $serverip

=> setenv loadaddr a0000000 // should already be set
=> tftp qspi_firmware.img // download from server
=> sf probe

=> sf erase 0 +$filesize
=> sf write $loadaddr 0 $filesize

=> reset

5.5 NAND Flash

If NAND Flash has been completely deleted or corrupted, meaning there is no U-

Boot output when you power on the board, then you will need to boot into U-Boot

from one of the other boot media in order to restore the contents of NAND Flash.

For an MPX-LS1043A, at the U-Boot prompt, enter the following commands:

=> setenv loadaddr a0000000

=> tftp nand_firmware.img

=> nand erase 0 +$filesize

=> nand write $loadaddr 0 $filesize

=> reset

5.6 XSPI Flash

If Flex-SPI Nor Flash has been completely deleted or corrupted, meaning there is

no U-Boot output when you power on the board, then you will need to boot into U-

Boot from one of the other boot media in order to restore the contents of SPI Nor

Flash.

For an MPX-LX2160A, at the U-Boot prompt, enter the following commands:

=> ping $serverip

=> setenv loadaddr a0000000 // should already be set
=> tftp xspi_firmware.img // download from server
=> sf probe

=> sf erase 0 +$filesize
=> sf write $loadaddr 0 $filesize

Linux 5.10 Yocto SDK V2.1 15/25
 © MicroSys Electronics GmbH 2022

6 Rebuilding U-Boot and Linux

MicroSys uses a Yocto-based Software Development Kit (SDK) for the miriac Sin-
gle Board Computers.

The current release of MicroSys' Linux 5.10 Yocto SDK uses "Yocto Project Core –
Hardknott 3.3". If you are new to Yocto, then documentation to get you started can
be found at https://docs.yoctoproject.org/3.3.4/

The Yocto SDK is maintained by the SoC manufacturer NXP (previously Free-
scale). MicroSys has added patches to cater for the changes made to the MicroSys
hardware. The MicroSys patches are available on the USB stick which was pro-
vided with the miriac SBC.

MicroSys's Linux 5.10.35 Yocto SDK is based on NXP's Layerscape SDK v21.08
and it is advisable to refer to some of the LSDK 21.08 documentation from NXP for
detailed explanations of various features.

Please go to: https://www.nxp.com/lsdk

You will need to download the Yocto SDK if you want to make changes to U-Boot
or the Linux kernel, which will be the case if you want to modify U-Boot and Linux
for your own carrier board. To be able to rebuild the Linux kernel you will need to
have a Linux host machine. If your preferred host machine is running Windows,
then you will need to use VirtualBox or VMware, or something similar, to run Linux.
All popular Linux distributions should work (CentOS, Debian, Fedora, openSUSE,
Ubuntu). A list of supported versions can be found here:

https://docs.yoctoproject.org/3.3.4/ref-manual/system-requirements.html

6.1 Prerequesits

In order to run the build of SDK following packages are required:

chrpath curl diffstat gawk git g++ make python3 python3-distutils software-

properties-common

Git needs to be configured with user name and email address in global settings.

6.2 Installing the Yocto SDK

The Yocto SDK can be found on GitHub at this URL:

https://source.codeaurora.org/external/qoriq/qoriq-components/yocto-sdk

Install the repo utility:

$: mkdir ~/bin

$: curl http://commondatastorage.googleapis.com/git-repo-

downloads/repo > ~/bin/repo

$: chmod a+x ~/bin/repo

$: export PATH=${PATH}:~/bin

Download the metadata:

$: mkdir yocto-sdk

https://docs.yoctoproject.org/3.3.4/
https://www.nxp.com/lsdk
https://docs.yoctoproject.org/3.3.4/ref-manual/system-requirements.html
https://source.codeaurora.org/external/qoriq/qoriq-components/yocto-sdk

Linux 5.10 Yocto SDK V2.1 16/25
 © MicroSys Electronics GmbH 2022

$: cd yocto-sdk

$: repo init -u

https://source.codeaurora.org/external/qoriq/qoriq-

components/yocto-sdk -b hardknott

$: repo sync --no-clone-bundle

Install MicroSys’ Layer for MPX-Modules:

$ cd /home/$USER/tmp

$ tar -xjf meta-microsys-layerscape-MICROSYS_LSDK_21.08-

4.0.2.tar.bz2

$ cd meta-microsys-layerscape-MICROSYS_LSDK_21.08-4.0.2

$./install

Where is the yocto-sdk installed? (/home/$USER/yocto-sdk)

/home/$USER/yocto-sdk

Installing...

Configuring...

Installation complete

[user@localhost MicroSys_Yocto_21.08-3.3]$

$ cd /home/$USER/yocto-sdk

That completes the installation process.

6.3 Building the BSP

To be able to build everything you will need to have internet access from your host

machine since the scripts need to fetch packages from the git repositaries.

Make sure you are in the directory where you installed the SDK. Typically,

 /home/$USER/yocto-sdk

The following command will create the build directory for your chosen target. If the

command is invoked with the -h option (help) it lists all the possible target

machines, which are mainly NXP Reference Design Boards. The final targets in the

list should be the MicroSys Single Board Computers. Now invoke the command

with the -m option (machine) and choose the mpxls1043 as your target machine.

$. ./setup-env -m mpxls1043ac1600msatacrx05

For lx2160a machine

$. ./setup-env -m mpxlx2160acrx08

For lx2160a machine with Hailo features

$. ./setup-env -m mpxlx2160acrx08ai

Linux 5.10 Yocto SDK V2.1 17/25
 © MicroSys Electronics GmbH 2022

This will create the build directory and setup the required environment (after you

have scrolled through a long license and accepted the EULA).

$ bitbake microsys-image-networking

The above command will build everything (U-Boot, kernel, root filesystem) and may

take several tens of minutes depending how powerful your host machine is (for the

very first build, this can take several hours). Note that your Linux machine needs

an internet connection for the above command.

Assuming the build is successful, you should see some text similar to the output

below:

meta-openstack-swift-deploy

meta-cloud-services =

"HEAD:d8bc0d92d0f741e2ea1e6d3d9bc6b7a091d03cfb"

meta-security = "HEAD:f9367e71f923fc7d2fb600208e2b97535ea41777"

meta-microsys = "<unknown>:<unknown>"

NOTE: Preparing RunQueue

NOTE: Checking sstate mirror object availability (for 11 objects)

NOTE: Executing SetScene Tasks

NOTE: Executing RunQueue Tasks

NOTE: Tasks Summary: Attempted 3054 tasks of which 2957 didn't need

to be rerun and all succeeded.

[user@localhost build_mpxls1043]$

The exact output may vary, depending on the version of Yocto in use.

Since your build was successful, you will see the resulting images if you change to

the following directory:

[user@localhost mpxls10xx]$ cd ~/yocto-

sdk/build_mpxls10xx/tmp/deploy/images/mpxls10xx

The Image Tree Binary file will have a name similar to:

fitImage.itb

The kernel and root filesystem are the same for all MPX modules supported by this

SDK; only U-Boot and the Device Trees are different between the modules.

Yocto will also generate a complete SD card image which can be copied directly

onto an SD card inserted in the Linux host with the following command:

Linux 5.10 Yocto SDK V2.1 18/25
 © MicroSys Electronics GmbH 2022

$ sudo dd if=microsys-image-networking-machine-

date.rootfs.sdcard of=/dev/$SDX bs=2048 && sync

Where $SDX is the SD card device on your host and can be determined by

invoking the following command after inserting the SD card:

$ dmesg | tail

To rebuild U-Boot on its own the process is similar.

$ bitbake u-boot

If, for example, you have modified the device tree (mpxls1043.dts), the commands

to rebuild this are:

$ bitbake -f -c compile linux-qoriq

$ bitbake microsys-image-networking

6.3.1 Using Devtools to modify recipes.

6.3.1.1 Create Your Own Layer

Before you start modifying recipes it is best to create your own layer which will

contain your changes.

1. If not already done go to the build directory of the machine and call:

 $. SOURCE_THIS

 This configures and starts bitbake.

2. Go to the sources/ directory and create your layer there:

 $ bitbake-layers create-layer --priority 20 meta-mylayer

Note 1: because the priority of meta-microsys-layerscape is 10, it is recommended

 to choose a higher number as priority for your own layer (but less than 99).

Note 2: it is a good practice to prefix the layer name with "meta-".

Note 3: this is an optional step. You can remove the directory

 recipes-example in the directory meta-mylayer/.

3. Go to the build directory of the machine and add your new layer with:

 $ bitbake-layers add-layer ../sources/meta-mylayer

Linux 5.10 Yocto SDK V2.1 19/25
 © MicroSys Electronics GmbH 2022

6.3.1.2 Modifying Linux Kernel

You can modify the sources of Linux kernel using the Yocto tool devtool. This task

assumes that you have created your own layer as described in the section above.

Note that this works for other recipes, too. For example, if you plan to modify the

RCW or U-Boot

use linux-qoriq as recipe name.

1. If not already done go to the build directory of the machine and call:

$. SOURCE_THIS

 This configures and starts bitbake.

2. Call devtool with the recipe for Linux as argument:

 $ devtool modify linux-qoriq

 This creates a layer called "workspace" which contains the Linux

 sources as a GIT repository. The sources can be found in the directory

 workspace/sources/linux-qoriq.

 Note: if you have done this step before, for example from a previous

 modification, then you have to call:

 $ devtool modify --no-extract linux-qoriq

 with the additional option '--no-extract'. In this case devtool expects that

 the source tree already exists.

3. Modify the sources with your favourite editor.

6.3.1.3 Build your Linux with devtool

 $ devtool build linux-qoriq

 You can find the results in workspace/sources/linux-qoriq/oe-workdir/image/boot.

 The resulting linux images are:

 - fitImage-5.10.35-3.0+<commit>.itb and device tree binaries.

 If you now want to test your new Linux you can create a new boot image with:

 $ devtool build-image microsys-image-layerscape

Linux 5.10 Yocto SDK V2.1 20/25
 © MicroSys Electronics GmbH 2022

 You can find the output files in tmp/deploy/images/<machinename>.

4. Once you're done with your changes finish your work

- Go to workspace/sources/linux-qoriq and commit your changes using 'git'

- Update the recipe with:

 $ devtool finish linux-qoriq meta-mylayer

 This copies and saves your changes into meta-mylayer.

 If you plan to make more modifications to Linux it's better not to delete

 the source tree from the 'workspace' directory. Keep it.

 Note: If you think that you are done with all of your changes then you can remove

 the recipe from the workspace layer with:

 $ devtool reset linux-qoriq

 This will **erase all** of your changes from workspace.

5. Now you can rebuild your image including your changes with:

 $ bitbake microsys-image-layerscape

Note: if you want to modify the Linux kernel configuration you can call:

 $ bitbake -c menuconfig linux-qoriq

Linux 5.10 Yocto SDK V2.1 21/25
 © MicroSys Electronics GmbH 2022

6.4 Build Toolchain for Cross-compilation

If you want to cross-compile for an ARMv8 target you first need to build the cross-

toolchain on your Linux host. This requires that the Yocto SDK be installed so that

you can execute the appropriate bitbake command. Please refer to section 6.2

Installing the Yocto SDK and setup the environment as described in start of 6.3

Building the BSP.

To build the toolchain, enter:

$ bitbake meta-ide-support

After you have built the toolchain, you’ll see a script in the tmp directory which

needs to be sourced from each terminal where you want to invoke the cross-com-

piler.

$ cd tmp

$ source environment-setup-aarch64-fsl-linux

$ unset LDFLAGS

6.5 Hailo Benchmarking:

Please follow the installation procedure for installing the network data to perform

benchmarking.

By default we have included yolov5m network data for benchmarking which can be

run as follows:

hailortcli run /home/root/yolov5m/files/yolov5m.hef

Running inference (/home/root/yolov5m/files/yolov5m.hef):

 Mode: streaming

 Transform data: true

 Data is quantized: true

 Format type: auto

 Time to run: 00:00:05

Inference... 100% | 956 | FPS: 191.11 | ETA: 00:00:00

Inference result:

 Duration: 00:00:05

 FPS: 191.10

 Send Rate: 1878.58 Mbit/s

 Recv Rate: 3305.87 Mbit/s

For scanning the available Hailo devices please use:

Linux 5.10 Yocto SDK V2.1 22/25
 © MicroSys Electronics GmbH 2022

hailortcli scan

Hailo PCIe Devices:

[-] Device BDF: 0000:01:00.0

[-] Device BDF: 0001:01:00.0

#

Linux 5.10 Yocto SDK V2.1 23/25
 © MicroSys Electronics GmbH 2022

7 Appendix

7.1 Offer to Provide Software Source Code

This product contains copyrighted software that is licensed under the General

Public License (“GPL”) and under the Lesser General Public License Version

(“LGPL”). The GPL and LGPL licensed code in this product is distributed without

any warranty. Copies of these licenses are included in this product.

You may obtain the complete corresponding source code (as defined in the GPL)

for the GPL Software, and/or the complete corresponding source code of the LGPL

Software (with the complete machine-readable “work that uses the Library”) for a

period of three years after our last shipment of the product including the GPL

Software and/or LGPL Software, which will be no earlier than 01-Dec-2017, for the

cost of reproduction and shipment, which is dependent on the preferred carrier and

the location where you want to have it shipped to, by sending a request to:

MicroSys Electronics GmbH

Muehlweg 1

82054 Sauerlach

Germany

In your request please provide the product name and version for which you wish to

obtain the corresponding source code and your contact details so that we can

coordinate the terms and cost of shipment with you.

The source code will be distributed WITHOUT ANY WARRANTY and licensed

under the same license as the corresponding binary/object code.

This offer is valid to anyone in receipt of this information.

MicroSys Electronics GmbH is eager to duly provide complete source code as

required under various Free Open Source Software licenses. If however you

encounter any problems in obtaining the full corresponding source code we would

be much obliged if you notify us using the email address gpl@microsys.de, stating

the product and describing the problem (please do NOT send large attachments

such as source code archives to this email address)

7.2 Alternative Operating Systems

MicroSys Electronics GmbH offers Linux and Microware's OS-9 RTOS support for

modules containing NXP's QorIQ processors.

Other Operating Systems are available on request only.

7.3 Further Reading

Documentation on NXP's QorIQ processors and the Layerscape SDK can be found

here:

www.nxp.com/qoriq-arm

www.nxp.com/lsdk

Click on the Documentation tab to download PDFs. Registration is usually required.

mailto:gpl@microsys.de
http://www.nxp.com/qoriq-arm
http://www.nxp.com/lsdk

Linux 5.10 Yocto SDK V2.1 24/25
 © MicroSys Electronics GmbH 2022

7.4 Glossary

Here are some acronyms and abbreviations which you will encounter when dealing

with the SDK and NXP's Layerscape processors.

ATF Arm Trusted Firmware. Now more accurately known as TF-A

(Trusted Firmware-A). See https://developer.arm.com/

DPAA Data Path Acceleration Architecture (first generation) used in

LS1043A and LS1046A

DPAA2 Data Path Acceleration Architecture (second generation) used in

LS1088A and LX2160A

DPC Data Path Configuration file. Needed for DPAA2

DPL Data Path Layout. Needed for DPAA2

DTB Device Tree Blob. The binary representation of device trees.

FMan Frame Manager. A DPAA hardware block.

FSL Freescale (were acquired by NXP Semiconductors in Dec 2015)

ITB Image Tree Binary. A file containing kernel(s) and device tree(s)

MC Management Complex. A DPAA2 hardware block.

PBL Pre-Boot Loader. Can be optionally loaded after RCW.

PPA Primary Protected Application. A secure monitor running in

TrustZone which provides boot and runtime software services such

as PSCI and Arm’s SMC calling convention.

PSCI Power State Coordination Interface. An Arm standard interface.

RCW Reset Configuration Word. The first data the processor loads to

configure various interfaces and internal frequencies.

https://developer.arm.com/

Linux 5.10 Yocto SDK V2.1 25/25
 © MicroSys Electronics GmbH 2022

7.5 Document History

Date Version Change Description

2018-08-22 0.1 Initial Release for 4.14 kernel

2018-09-11 0.2 Minor improvements

2018-12-19 0.3 Added comments on FMC

2021-10-11 1.0 Update to LSDK 20.12

2021-11-18 2.0 Update to LSDK 21.08 and added support for SBC-LX2160A

2021-12-01 2.1 Added support for AIP-LX2160A

2022-04-26 2.2 Update link to curl tool

Table 7-1 Document history

